

A ^{35}Cl NQR Study on Exchange Interactions between Paramagnetic $[\text{IrCl}_6]^{2-}$ Ions

Hiroshi Miyoshi, Keizo Horiuchi^a, and Ryuichi Ikeda

Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan

^a Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan

Reprint requests to Prof. R. I.; Fax: +81 298 53 6503, E-mail: ikeda@staff.chem.tsukuba.ac.jp

Z. Naturforsch. **57 a**, 431–434 (2002); received January 23, 2002

Presented at the XVIth International Symposium on Nuclear Quadrupole Interactions, Hiroshima, Japan, September 9-14, 2001.

The ^{35}Cl and ^{37}Cl NQR frequencies and spin-lattice relaxation times T_{1Q} in paramagnetic M_2IrCl_6 ($\text{M} = \text{NH}_4, \text{Cs}$) were measured at 4 - 350 K. The observed temperature dependences were attributed to EFG fluctuations caused by lattice vibrations and magnetic field fluctuations caused by paramagnetic ions. The exchange parameters J in the NH_4 and Cs salts were calculated from ^{35}Cl NQR T_{1Q} to be 8.6 K and 1.8 K respectively. ^{37}Cl data yielded 9.1 K and 2.1 K respectively. The obtained lattice constant dependence of J values was explained by considering Ir-Cl...Cl-Ir superexchange interaction.

Key words: Cl NQR; Superexchange Interaction; Paramagnetic Salt; Spin-lattice Relaxation.